organic compounds

 \times 0.13 mm

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Methoxybenzylidene)-4,4-dimethyl-3.4-dihvdronaphthalen-1(2H)-one

Mohamed Akhazzane,^a Hafid Zouihri,^b Jean-Claude Daran,^c Abdelali Kerbal^a and Ghali Al Houari^a*

^aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, ^bLaboratoire de Diffraction des Rayons X, Division UATRS, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco, and ^cLaboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex, France Correspondence e-mail: ghali68@yahoo.fr

Received 15 October 2010; accepted 29 October 2010

Key indicators: single-crystal X-ray study; T = 190 K, P = 0.0 kPa; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.108; data-to-parameter ratio = 15.6.

The title compound $C_{20}H_{20}O_2$, has the exocyclic C=C double bond in an E configuration. The two benzene rings form a dihedral angle of 72.92 (6) $^{\circ}$.

Related literature

For general background to dipolar-1,3 cycloaddition reactions, see: Kerbal et al. (1988), Bennani et al. (2007); Al Houari et al. (2008). For a related structure, see: Al Houari et al. (2005).

Experimental

Crystal data C20H20O2

 $M_r = 292.36$

Monoclinic, $P2_1/n$	Z = 4
a = 11.8587 (3) Å	Mo $K\alpha$ radiation
b = 8.7536 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 14.9392 (4) Å	$T = 190 { m K}$
$\beta = 96.527 \ (1)^{\circ}$	$0.19 \times 0.15 \times 0.11$
V = 1540.73 (7) Å ³	

Data collection

Bruker APEXII CCD detector diffractometer 15082 measured reflections

Refinement

S = 1.08

 $wR(F^2) = 0.108$

3159 reflections

 $R[F^2 > 2\sigma(F^2)] = 0.039$

202 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

3159 independent reflections

 $R_{\rm int} = 0.029$

2709 reflections with $I > 2\sigma(I)$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thinks the CNRST, Morocco, for making this work possible.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2066).

References

- Al Houari, G., Kerbal, A., Bennani, B., Baba, M. F., Daoudi, M. & Ben Hadda, T. (2008). Arkivok, pp. 42-50.
- Al Houari, G., Kerbal, A., El Bali, B. & Bolte, M. (2005). Acta Cryst. E61, 03330-03331.

Bennani, B., Kerbal, A., Daoudi, M., Filali Baba, B., Al Houari, G., Jalbout, A. F., Mimouni, M., Benazza, M., Demailly, G., Akkurt, M., Öztürk Yıldırım, S. & Ben Hadda, T. (2007). Arkivok, pp. 19-40.

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Kerbal, A., Tshiamala, K., Vebrel, J. & Laude, B. (1988). Bull. Soc. Chim. Belg. 97, 149–161.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2010). E66, o3067 [doi:10.1107/S1600536810044387]

2-(4-Methoxybenzylidene)-4,4-dimethyl-3,4-dihydronaphthalen-1(2H)-one

M. Akhazzane, H. Zouihri, J.-C. Daran, A. Kerbal and G. Al Houari

Comment

Knowledge of the configuration and conformation of the title compound, (1), is necessary to understand its behaviour in dipolar-1,3 cycloaddition reactions (Bennani *et al.* 2007, Al Houari *et al.* 2008). To confirm the E configuration of the exocyclic C=C double bond, an X-ray crystal structure determination has been carried out.

In the title compound, $C_{20}H_{20}O_2$, the two benzene rings form a dihedral angle of 72.92 (6)°. The cyclohexyl ring of the 3,4-dihydronaphthalen-1(2*H*)-one is distorted from a classical chair conformation, presumably due to conjugation of the planar annulated benzo ring (r.m.s. deviation 0.32 (13) A °). In the crystal, molecules are connected through C—H···O hydrogen bonds.

Experimental

The synthesis of 2-(4-methoxybenzylidene)-4,4-dimethyl-3,4-dihydronaphthalen-1(2*H*)-one was achieved using the method reported by Kerbal *et al.* (1988), *i.e.* by a condensation of *para* anisaldehyde with 4,4-dimethyl-3,4-dihydronaphthalen-1(2*H*)-one in an alkaline medium in methanol.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.97 Å (methyne) and 0.93Å (aromatic) with $U_{iso}(H) = 1.2Ueq(C)$.

Figures

Fig. 1. Two independent molecules of the title compound showing the atom-labelling scheme and 30% probability displacement ellipsoids.

Fig. 2. Partial packing view.

2-(4-Methoxybenzylidene)-4,4-dimethyl-3,4-dihydronaphthalen-1(2H)-one

Crystal data

$C_{20}H_{20}O_2$	F(000) = 624
$M_r = 292.36$	$D_{\rm x} = 1.260 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 1852 reflections
a = 11.8587 (3) Å	$\theta = 1.5 - 25.7^{\circ}$
b = 8.7536 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 14.9392 (4) Å	T = 190 K
$\beta = 96.527 (1)^{\circ}$	Block, colourless
$V = 1540.73 (7) \text{ Å}^3$	$0.19\times0.15\times0.13~mm$
Z = 4	

Data collection

Bruker APEXII CCD detector diffractometer	2709 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.029$
graphite	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
ω and ϕ scans	$h = -14 \rightarrow 14$
15082 measured reflections	$k = -10 \rightarrow 10$
3159 independent reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.108$	H-atom parameters constrained
<i>S</i> = 1.08	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0577P)^{2} + 0.2729P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3159 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
202 parameters	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
C6	0.04770 (10)	1.19124 (13)	0.42407 (7)	0.0258 (2)
C10	0.25868 (10)	1.19809 (13)	0.41294 (7)	0.0269 (3)
C9	0.25676 (9)	1.03468 (13)	0.37763 (7)	0.0270 (3)
C5	0.16041 (10)	1.26897 (13)	0.43710 (7)	0.0265 (3)
C14	-0.07348 (9)	0.83891 (13)	0.29360 (7)	0.0257 (2)
C19	-0.04025 (10)	0.69666 (13)	0.32854 (8)	0.0291 (3)
H19	0.0014	0.6914	0.3851	0.035*
C15	-0.13830 (10)	0.84177 (13)	0.20924 (8)	0.0292 (3)
H15	-0.1640	0.9350	0.1849	0.035*
C8	0.15580 (9)	0.94675 (12)	0.40857 (8)	0.0268 (3)
H8A	0.1489	0.8489	0.3779	0.032*
H8B	0.1706	0.9271	0.4727	0.032*
C16	-0.16482 (10)	0.70964 (13)	0.16147 (8)	0.0301 (3)
H16	-0.2070	0.7146	0.1051	0.036*
C7	0.04589 (9)	1.03173 (12)	0.39000 (7)	0.0246 (2)
C18	-0.06740 (10)	0.56202 (13)	0.28164 (8)	0.0296 (3)
H18	-0.0445	0.4683	0.3068	0.036*
C17	-0.12881 (10)	0.56856 (12)	0.19710 (8)	0.0267 (3)
C13	-0.04948 (9)	0.98441 (13)	0.34094 (7)	0.0264 (3)
H13	-0.1092	1.0539	0.3362	0.032*
C11	0.36517 (10)	0.94804 (15)	0.41279 (9)	0.0371 (3)
H11A	0.4291	0.9941	0.3892	0.056*
H11B	0.3585	0.8434	0.3937	0.056*
H11C	0.3757	0.9524	0.4774	0.056*
C4	0.16424 (12)	1.42072 (14)	0.46707 (8)	0.0349 (3)
H4	0.0994	1.4656	0.4850	0.042*
C1	0.35781 (11)	1.28557 (16)	0.41635 (9)	0.0373 (3)
H1	0.4238	1.2414	0.4000	0.045*
C3	0.26285 (13)	1.50403 (15)	0.47021 (9)	0.0423 (3)
H3	0.2648	1.6048	0.4900	0.051*
C20	-0.12557 (12)	0.29770 (14)	0.17537 (10)	0.0400 (3)
H20A	-0.0442	0.2929	0.1850	0.060*
H20B	-0.1533	0.2225	0.1315	0.060*
H20C	-0.1561	0.2779	0.2311	0.060*
C2	0.35928 (13)	1.43660 (16)	0.44363 (10)	0.0448 (4)
H2	0.4256	1.4934	0.4441	0.054*
C12	0.24585 (12)	1.04047 (16)	0.27413 (8)	0.0393 (3)
H12A	0.1760	1.0898	0.2519	0.059*
H12B	0.2463	0.9384	0.2507	0.059*
H12C	0.3085	1.0968	0.2552	0.059*

Fractional	atomic	coordinates	and	isotrop	ic or e	eauivalent	isotrop	ic dis	placement	parameters ($(\AA^2$)
1		000.000000		1001. op		900000000000000000000000000000000000000	1001. op		p		(- -)	/

supplementary materials

02	-0.15974 (8)	0.44573 (9)	0.14344 (6)	0.0359 (2)
01	-0.03919 (7)	1.26029 (9)	0.43670 (6)	0.0340 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C6	0.0308 (6)	0.0244 (5)	0.0221 (5)	0.0023 (4)	0.0030 (4)	0.0019 (4)
C10	0.0296 (6)	0.0296 (6)	0.0204 (5)	-0.0040 (5)	-0.0016 (4)	0.0033 (4)
C9	0.0256 (6)	0.0295 (6)	0.0261 (6)	0.0004 (4)	0.0036 (4)	-0.0003 (4)
C5	0.0337 (6)	0.0247 (6)	0.0203 (5)	-0.0026 (5)	0.0005 (4)	0.0011 (4)
C14	0.0221 (5)	0.0262 (6)	0.0288 (6)	-0.0014 (4)	0.0036 (4)	-0.0002 (4)
C19	0.0300 (6)	0.0299 (6)	0.0264 (6)	-0.0019 (5)	-0.0012 (5)	0.0036 (5)
C15	0.0296 (6)	0.0245 (6)	0.0328 (6)	0.0021 (5)	0.0000 (5)	0.0042 (5)
C8	0.0263 (6)	0.0218 (5)	0.0319 (6)	0.0014 (4)	0.0021 (5)	0.0008 (4)
C16	0.0328 (6)	0.0306 (6)	0.0258 (6)	-0.0017 (5)	-0.0018 (5)	0.0018 (5)
C7	0.0256 (6)	0.0229 (5)	0.0255 (5)	0.0000 (4)	0.0042 (4)	0.0022 (4)
C18	0.0324 (6)	0.0229 (6)	0.0336 (6)	-0.0001 (4)	0.0036 (5)	0.0056 (5)
C17	0.0280 (6)	0.0247 (6)	0.0283 (6)	-0.0041 (4)	0.0071 (4)	-0.0014 (4)
C13	0.0257 (6)	0.0240 (6)	0.0297 (6)	0.0023 (4)	0.0041 (4)	0.0016 (4)
C11	0.0269 (6)	0.0397 (7)	0.0452 (7)	0.0031 (5)	0.0067 (5)	0.0022 (6)
C4	0.0503 (8)	0.0267 (6)	0.0265 (6)	-0.0013 (5)	-0.0014 (5)	-0.0019 (5)
C1	0.0312 (6)	0.0418 (7)	0.0374 (7)	-0.0077 (5)	-0.0030 (5)	0.0062 (6)
C3	0.0624 (9)	0.0276 (6)	0.0333 (7)	-0.0121 (6)	-0.0102 (6)	-0.0015 (5)
C20	0.0513 (8)	0.0238 (6)	0.0469 (8)	-0.0035 (5)	0.0143 (6)	-0.0020 (5)
C2	0.0457 (8)	0.0421 (8)	0.0423 (8)	-0.0204 (6)	-0.0140 (6)	0.0082 (6)
C12	0.0462 (8)	0.0442 (8)	0.0282 (6)	-0.0006 (6)	0.0074 (6)	-0.0039 (5)
O2	0.0481 (5)	0.0256 (4)	0.0338 (5)	-0.0052 (4)	0.0031 (4)	-0.0038 (3)
O1	0.0330 (5)	0.0291 (4)	0.0403 (5)	0.0058 (4)	0.0066 (4)	-0.0032 (4)

Geometric parameters (Å, °)

C6—O1	1.2275 (13)	C7—C13	1.3414 (16)
C6—C7	1.4855 (15)	C18—C17	1.3855 (17)
C6—C5	1.4927 (16)	C18—H18	0.9300
C10-C1	1.3990 (17)	C17—O2	1.3661 (14)
C10—C5	1.4031 (16)	С13—Н13	0.9300
C10—C9	1.5239 (16)	C11—H11A	0.9600
C9—C11	1.5330 (16)	C11—H11B	0.9600
C9—C12	1.5377 (16)	C11—H11C	0.9600
С9—С8	1.5381 (15)	C4—C3	1.3745 (19)
C5—C4	1.4009 (16)	C4—H4	0.9300
C14—C19	1.3898 (16)	C1—C2	1.383 (2)
C14—C15	1.3999 (16)	C1—H1	0.9300
C14—C13	1.4689 (15)	C3—C2	1.385 (2)
C19—C18	1.3901 (16)	С3—Н3	0.9300
С19—Н19	0.9300	C20—O2	1.4237 (15)
C15—C16	1.3766 (16)	C20—H20A	0.9600
C15—H15	0.9300	C20—H20B	0.9600
C8—C7	1.4990 (15)	C20—H20C	0.9600

C8—H8A	0.9700		С2—Н2		0.9300
C8—H8B	0.9700		C12—H12A		0.9600
C16—C17	1.3925 (16)		C12—H12B		0.9600
C16—H16	0.9300		C12—H12C		0.9600
O1—C6—C7	122.40 (10)		C19—C18—H18		120.3
O1—C6—C5	120.69 (10)		O2—C17—C18		125.49 (10)
C7—C6—C5	116.80 (9)		O2-C17-C16		115.05 (10)
C1—C10—C5	117.88 (11)		C18—C17—C16		119.45 (10)
C1—C10—C9	120.38 (11)		C7-C13-C14		129.49 (10)
C5—C10—C9	121.60 (10)		С7—С13—Н13		115.3
C10-C9-C11	111.52 (9)		C14-C13-H13		115.3
C10-C9-C12	108.26 (10)		C9-C11-H11A		109.5
C11—C9—C12	109.40 (10)		C9—C11—H11B		109.5
C10—C9—C8	110.32 (9)		H11A—C11—H11B		109.5
C11—C9—C8	107.49 (9)		C9—C11—H11C		109.5
C12—C9—C8	109.83 (10)		H11A—C11—H11C		109.5
C4—C5—C10	120.26 (11)		H11B-C11-H11C		109.5
C4—C5—C6	118.02 (11)		C3—C4—C5		120.70 (13)
C10—C5—C6	121.50 (10)		С3—С4—Н4		119.7
C19—C14—C15	117.22 (10)		С5—С4—Н4		119.7
C19—C14—C13	124.40 (10)		C2-C1-C10		121.09 (13)
C15—C14—C13	118.32 (10)		С2—С1—Н1		119.5
C14—C19—C18	122.06 (10)		С10—С1—Н1		119.5
С14—С19—Н19	119.0		C4—C3—C2		119.43 (12)
С18—С19—Н19	119.0		С4—С3—Н3		120.3
C16—C15—C14	121.43 (10)		С2—С3—Н3		120.3
С16—С15—Н15	119.3		O2—C20—H20A		109.5
C14—C15—H15	119.3		O2-C20-H20B		109.5
C7—C8—C9	112.72 (9)		H20A—C20—H20B		109.5
С7—С8—Н8А	109.0		O2—C20—H20C		109.5
С9—С8—Н8А	109.0		H20A—C20—H20C		109.5
С7—С8—Н8В	109.0		H20B-C20-H20C		109.5
С9—С8—Н8В	109.0		C1—C2—C3		120.59 (12)
H8A—C8—H8B	107.8		С1—С2—Н2		119.7
C15—C16—C17	120.32 (10)		С3—С2—Н2		119.7
С15—С16—Н16	119.8		C9—C12—H12A		109.5
С17—С16—Н16	119.8		C9—C12—H12B		109.5
C13—C7—C6	117.12 (10)		H12A—C12—H12B		109.5
C13—C7—C8	127.53 (10)		C9—C12—H12C		109.5
C6—C7—C8	115.13 (9)		H12A—C12—H12C		109.5
C17—C18—C19	119.48 (10)		H12B-C12-H12C		109.5
C17—C18—H18	120.3		C17—O2—C20		118.20 (10)
Hydrogen-bond geometry (Å, °)					
D—H····A		<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C13—H13…O1		0.93	2.44	2.8034 (15)	104

Fig. 2